Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy.
نویسندگان
چکیده
In our previous study ( Mao et al. J. Phys. Chem. Lett. 2013 , 4 , 43 - 47 ), we proposed a novel method, that is, the shear-flow-induced hierarchical self-assembly of two-dimensional fillers (octadecylamine-functionalized graphene) into the well-ordered parallel stripes in a polymer matrix, to fabricate the anisotropic conductive materials. In this study, we extend this method to one-dimensional multiwalled carbon nanotubes (MWCNTs). Under the induction of shear flow, the dispersed poly(styrene ethylene/butadiene-styrene) (SEBS) phase and MWCNTs can spontaneously assemble into well-ordered parallel stripes in the polypropylene (PP) thin film. The electrical measurements indicate that the electrical resistivity in the direction parallel to the stripes is almost 6 orders of magnitude lower than that in the perpendicular direction, which is by far the most striking conductive anisotropy for the plastic anisotropic conductive materials. In addition, it is found that the size of the MWCNT stripe as well as the electrical property of the resulting anisotropic conductive thin film can be well-controlled by the gap of the shear cell.
منابع مشابه
Tailored Parallel Graphene Stripes in Plastic Film with Conductive Anisotropy by Shear-Induced Self-Assembly.
We present a simple but efficient route to prepare a highly anisotropic conductive plastic thin film from the polypropylene/(styrene-ethylene/butadiene-styrene) triblock copolymer/graphene blend via shear-induced self-assembly. Under the shear-flow induction, GE nanosheets dispersed in the polymer matrix can spontaneously assemble into ordered parallel stripes, which endow the materials signifi...
متن کاملOptical anisotropy in single-walled carbon nanotube thin films: implications for transparent and conducting electrodes in organic photovoltaics.
Optical anisotropy in single-walled carbon nanotube thin film networks is reported. We obtain the real and imaginary parts of the in-(parallel) and out-of-plane (perpendicular) complex dielectric functions of the single-walled carbon nanotube (SWNT) thin films by combining transmission measurements at several incidence angles with spectroscopic ellipsometry data on different substrates. In spar...
متن کاملA method of fabricating highly transparent and conductive interpenetrated carbon nanotube-parylene networks.
We report a method of fabrication of free standing and ultra-thin carbon nanotube-parylene-C interpenetrating networks. The network is highly transparent, highly flexible, and more conductive than transparent nanotube/polymer composites. Scanning electron microscope imaging reveals that the interpenetrated networks are dense and pinhole free compared to bare nanotube networks. We found that par...
متن کاملLiquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors.
We introduce a simple solution-based method for the fabrication of highly oriented carbon nanotube (CNT) arrays to be used for thin-film transistors. We exploit the liquid-crystalline behavior of a CNT solution near the receding contact line during tilted-drop casting and produced long-range nematic-like ordering of carbon nanotube stripes caused by confined micropatterned geometry. We further ...
متن کاملCarbon Nanotube/conductive Additive/space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation
Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (α) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2014